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ABSTRACT 

The property P,. (directly analogous to Valentine's property P3) is used to 
prove several curious results concerning subsets of a topological linear space, 
among them the following: (a) If a closed set S has property Pm and contains k 
points of local nonconvexity no distinct pair of which can see each other via S, 
then S is the union of m -- k -- 1 or fewer starshaped sets. (b) Any dosed 
connected set with property P,. is polygonally connected. (c) A dosed connected 
set S with property P,, is an Lm - ~ set (each pair of points may be joined by a 
polygonal arc of m -- 1 of fewer sides in S). (d) A finite-dimensional set with 
property P,. is an L 2,1 - 3 set. A new proof of Tietze's theorem on locally convex 
sets is given, and various examples refute certain plausible conjectures. 

1. Introduction. A considerable amoun t  o f  research has been devoted to 

the convexity properties o f  a set which are determined by assumptions made  on 

each m points of  the set (m > 2). By altering those assumptions for a closed 

set in E z, for example, one may conclude variously that  S is starshaped (Kras- 

nosel'ski~ [10]), S is the union of  three convex sets (Valentine [16]), S is convex 

(Marr  and Stamey [11]),  S is the union of  two convex sets (Stamey and Marr  [14]), 

or S is the union of  two starshaped sets (Koch  and Marr  [9]).  For  related results 

see Allen [1], Hare and G a d d u m  [6],  Hare and Kenelly [7],  and McKinney  [13].  

Our  concern here is with the fol lowing condi t ion:  In  any linear space, a set S is 

said to be (m, n) convex if it contains at least m points,  and if for each m distinct 

o f  S at least n o f  the ( 2 )  possible segments determined by those points are points 

conta ined in S. I f  S is (m, 1) convex, or  briefly, m-convex, then S is said to have 

property P,,. We shall call a set exactly (m, n) convex if it is (m, n) convex, but not  

(re, n +  1 ) c o n v e x ,  m > 3  and n _ _ < ( 2 ) ,  and a set is exactly m-convex if it is 

m-convex, but not  (m - 1)-convex, m ___ 2. The convent ion that  no  nonempty  set 
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is 1-convex will be made, so it follows that every infinite convex set is exact ly  

2-convex. 

The concept of (m, n) convexity is but a special case of even more general 

ideas proposed by J. E. Allen [1] and various concepts discussed by Danzer, 

Griinbaum, and Klee [4], but these authors were primarily interested in characteri- 

zations of convexity. Property Pm was introduced for the case m = 3 by Valentine 

[16] who proved it was a sufficient condition for a closed set in E 2 to be the union 

of three convex sets. It is apparently a difficult question whether an arbitrary 

closed set in E d having property Pm for m > 3 and d > 2 is the union of even a 

finite number of convex sets. 

The discussion will begin with the more general concept of (m, n) convexity, 

then it will be devoted to property Pr,. The setting is a Hausdorff topological 

linear space L,e over the reals, with certain results applying more particularly to a 

finite d-dimensional space E d. The (closed) segment with endpoints x and y is the 

set {z~ = (1 - 2)x + ~.y: 0 <_ ~. _< 1}, denoted by xy ,  while the half-open segments 

determined by x and y are the sets {zz} for which, respectively, 0 =< 2 < 1, 

0 < 2 __< 1, and 0 < 2 < 1, denoted by [xy ) , ( xy ] ,  and (xy) .  The convex hull of a 

set S will be denoted convS, its (topological) closure, cl S, and its boundary, bd S. 

The authors take this opportunity to acknowledge with appreciation the many 

helpful comments and additional information provided by the referee. 

2. (re, n) Convexity. For brevity let the binomial coefficient 2 .  = -2 m(m  - 1) 

be represented by Cm. For each pair of integers (m, n), m => 3 and 1 __< n < C,, one 

can easily construct sets S c E z which are exactly (m, n) convex, in the following 

manner: Note that the positive integers 1, 2, 3, ... may be written C3 - 2, C 3 - 1, 

C4 - 3, C4 - 2, C4 - 1, Cs - 4,..- and thus there exists integers r and s such that 

n = C m _  , - s , O - - - r - < m - 3  and l _< s -< m -  r - 1 ;  then take S to be the set 

consisting of r isolated points, together with an (rn - r)-sided convex polygon with 

interior, but with precisely s open sides removed. However, an elementary argument 

we leave for the reader proves the following result, which shows the impossibi- 

lity-of such a onstruction for closed sets. 

LEMMA 1. A closed (m, Cm-1 + 1) convex set is convex. 

It is possible to sharpen this considerably, which yields the following theorem: 

THEOREM 1. I f  S ~ .~e and S is a closed (m,n) convex set with n > ¼(m - 1) 2, 



Vol. 8, 1 9 7 0  CONVEXITY AND A CERTAIN PROPERTY P,. 41 

then S is either convex or the union or a closed, convex set S 1 and k isolated 

points not in $1, where 

k < m - l ( 1  + ~/8n + 1. 

PROOF. I f  S is not convex there exist points x e S and y ~ S such that xy  ¢ S 

and if S is connected we can find two infinite nets {x~} and {ys} in S defined by 

the directed sets D and E such that lim~ox t = x and limi~Ey J = y. Since S is 

closed there exist io ~ D, Jo ~ E such that for i > io and j > Jo xiYi c/: S. We can 

then obtain m points x~ and yj in S such that the number of  segments joining 

them and lying in S does not exceed 

1 2Gin~ 2 = ¼(m -- 1) 2 4 

if m is even, or 

C r + l  -k- C ,  = l ( m  - 1) 2 

if m is odd and rn = 2r + 1, which contradicts the hypothesis. I f  S is not con- 

nected, then by the preceding argument each component  is convex. In view of 

the inequality n > ¼(m - 1) 2 it follows that the components must be singletons 

{Pl} , ' " ,  {Pk} for some finite k, and $1, any closed convex set. Since among the 

points p~ no joins occur while among any set of  points in $1 all possible occur, 

we must have 

Cm_k ~ n 

f rom which the desired inequality in m, k, and n may be derived. 

COROLLARY 1. A closed, connected ( m , n )  convex set in £z is convex i f  

n > ¼(m - 1) 2. 

R~MARK 1. The result in Corollary 1 is best possible since the union of any two 

infinite convex sets is (m, [ ¼ ( m -  1)2]) convex for each m > 2. Obviously, the 

bound for k in the theorem is also best by the manner in which it was obtained. 

A bound which depends on m only is useful if  S is exactly (m, n) convex. Since 

n > ¼ ( m - l ) i t  follows that 

k < m - 1(1 + x / 2 m Z - 4 m + 3 ) .  

REMARK 2. The referee has pointed out that a theorem due to Tur/m [15] 

enables one to determine the (m, n) convexity of  a closed set S c ~ in terms of 

the k-convexity of  its components and the number of  its one-pointed components 
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( =  isolated points). I f  S has infinitely many connected components,  or if a many- 

pointed component  of  S is not k-convex for any k, then S is not m-convex nor 

(m, n) convex for any m, n. Suppose S has s isolated points and a positive number 

t of  many-pointed components  C1, . . . ,  C t, and that C~ is exactly (m~ + 1)-convex 

for l _ < i _ < t ( 0 _ _ < s < o % l _ - < m ~ <  oo for l _< i_< t ) .  Then S is exactly 

( M + s + l ) - c o n v e x ,  where M = ] ~ = l m i .  Suppose M = s < m < o %  and let 

m -  s = k M  + r, where k >__ 1 and 1 < r < M. Then S is exactly (re, n) convex, 

where n = ½(m - s ) ( k  - 1) + ½r(k + 1). That  S is not (m, n + 1) convex can be 

shown explicitly by a simple construction: First choose M points y~,-..,yM in 

~.J~=~C~, such that Y~Yi ¢ S  for 1 N i < j  <= M ,  then replace each y~ by k + 1 

(if 1 _< i _< r) or k (if r < i N M) distinct points sufficiently close to yi, as in the 

proof  of  Theorem 1, and finally, add all the isolated points of  S. The (m, n) con- 

vexity of  S follows from Tur~m's theorem: A graph with m - s vertices and fewer 

than n edges must contain an independent set of  more than M vertices. 

3. Starshaped sets, L~ sets and m-convexity. We now turn our attention to 

the more special case of  m-convexity. There are sets which are not m-convex for any 

m > 2; for example, consider the complement  of  a strictly convex body i n E  d, 

d > 1. On the other hand, the union of any collection of m many-pointed convex 

sets is (m + 1)-convex (m > 1). The converse need not hold as the example of  the 

five-pointed star with interior shows. It  is an open question whether for any 

value of m greater than 3 a closed m-convex set in E 2 is the union of a finite 

number of  convex sets. 

The following usual terminology will be employed freely: 

DEF[NtTION: I f  the open segment joining two points x and y is contained in S, 

then we shall say that x sees y via S (x  and y need not be in S, and we use the 

convention that any point in S sees itself via S). I f  x sees y e T via S then we 

shall say that x sees T via S. A set T is v isual ly  independent  via S if no two 

distinct members of  T see each other via S. I f x  s S, define the local kerne l  o f  S at  x 

to be the set of  all points of  S which x can see via S, and denote this by Sx. 

S is said to be local ly  s tarshaped  at x e S if there exists a neighborhood whose 

intersection with S is starshaped with respect to x; S is local ly  s tarshaped if and 

only if it is locally starshaped at each of its points (it is well known that an open 

set in a topological linear space is locally stars~aIzed). Finally, ,~e defne  a 

poin t  o f  local nonconvex i t y  (or, lnc poin t )  of S to be any point x e S such that  

each neighborhoood U of x contains points y e S, z e S such that y z  ¢ S .  Such 
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points are referred to in Valentine [17] as points of "strong local nonconvexity" 

(Definition 4.2, p. 48). 

In connection with our opening comments in this section, the following example 

proves to be quite instructive: 

EXAMPLE 1. Let E 2 be identified with the complex plane and let C be the unit 

circle ] z I = 1, with z, = e~i/2nfor n = 0, l, 2 , . . . .  Let P be the infinite-sided polygon 

which circumscribes C, touching C at precisely the points 1, e -~i /2 ,  and z ,  for n 

even. The set S is then defined as the set of~points on and inside P with those z, 

deleted for which n is odd. 

We show that S is 4-convex, but is not the union of finitely many convex sets 

(an example of  a 4-convex starshaped set in E 3 which is not the union of finitely 

many convex sets can be obtained by taking the cone of p over S, where p is any 

point not in the plane of S; see the definition preceding Theorem 7). Note that S 

is the disjoint union of C less the points z2n+l (n = 0, l, ...), the interior of  C, and 

connected sets TEn+l (n = - 2 , - 1 , 0 , . . . )  which contain the vertices of  P, with 

z2~+l~bdT2~+l (n =0 ,1 , . . . ) .  It then follows that if x ~ T p  and y ~ T q ,  p v ~ q ,  

the segment x y  is either tangent to C or cuts C in two points x '  e bd Tp and 

y ' ~ b d T q .  Thus i f z  r e x y  and r is odd, then r = p ,  or r = q .  Now suppose x i 

(i = 1,2,3,4)  are four points of  S such that xix  j ¢ S  (1 < i < j  N 4). Then at 

least three of those points belong to U~=o TEn+l, say x 1 , x 2 , x 3 ,  and no segment 

xix  j is tangent to C. Suppose xl e Tp, x2~ T 0, and XaS Tr, and that z ,  e x l x 2 ,  

z , ,  ~ x~x 3 and z,,,, ~ x2x  a. Since the points xl ,  x2,x 3 cannot be collinear, u, u' ,  

and u"are  distinct and we must have u = p or u = q, u '  = p or u '  = r, and u" = q 

or u" = r. The cases being similar, assume that u = p and, therefore, u' ~ p, u'  = r, 

and u" = q. A contradiction is thereby gained by examining the cases resulting 

f rom z v ~ x~x4, zv, ~ XEX¢, and zv,, ~ XaX 4. Thus S is 4-convex. I f  S were the finite 

union of convex sets, say S = [,.J~'= 1 Ck, then the ray with origin 0 passing through 

zp (p = 1,3, 5, . . . )  meets bd S again at wp, and a subsequence wp,,..., w~,, ... must be- 

long to a single Ck. Since lim,_~Wp,, -- woo ---- 1, the triangle (wp,, wp2, woo) conta- 

ins zp2 in its interior; thus, there exists an s such that zp2 ~ conv {wp,' wp~, wv,} c S, 

a contradiction. 

The following results show that m-convex sets may be represented as finite 

unions of starshaped sets, however. I f  S is exactly m-convex, S contains a maximal 

visually independent subset X = { x ~ , " ' , x m - 1 ) .  Since each point of  S t X  must 

see some x~ and x~ can see itself via S, 
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Hence:  

THmREM 2. 

sets. 

REMARK 3. 

DAVID C. KAY AND MERLE D. GUAY 

m - - I  

S =  [,.J Sx,. 
i = 1  

Israel J. Math., 

Any m-convex set is the union of m - 1 or fewer starshaped 

The starshaped subsets S~, of  Theorem 2 need no t  be m-convex, as 

the set in Example  1 shows:  Take  xl  = 2z~ - za, and Sx, is clearly not  m-convex 

for any finite m. The result in Theorem 2 is clearly best possible since S can be 

the union o f m  - 1 disjoint closed convex sets. It is best possible even for connected 

m-convex subsets o f  E z, as shown by the fol lowing elementary example (to be used 

later for  another  purpose) :  

EXAMPLE 2. Wi th  the usual coordinat iza t ion o f  E 2, take the points  

a~ = (k ,0)  for  k = 1 , . . . , m  and bk = (k, 1) for  k =  1 , . . . , m - 1 .  Define 
m - 1  Tk =conv{ak,  bk, ak+~} \(akak+~) \(bkak+l) and S = Uk=l  Tk \{am}. S is con-  

nected and m-convex, but  is not  the union of  fewer than m - 1 starshaped sets 

since no two of  the m - 1 points  b~, .-., bin-~ can belong to the same local  kernel 

o f  S. 

Theorem 2 can be improved for  closed, connected m-convex sets as the next 

result shows. 

THEOREM 3. I f  a closed m-convex set S c £~' contains k lnc points (k > O) 

which are visually independent via S, then S is the union of m - k - 1  or 

fewer starshaped sets(l). 

PROOF. I f  k = 0, Theorem 2 implies the result directly, so assume k _>_ 1 and  

let ql,  .-., qk be k visually independent  lnc points o f  S. Choose a maximal  visually 

independent  subset X = {x 1, "',Xh} of  S such that  x i = qi for  i = 1, ..., k ( k  < h). 

As before, 
h 

S = [,.J Sx,. 
i = 1  

N o w  since ql  is an lnc point  o f  S there exist nets {y~} and {z j} in S over the directed 

sets D, E such that  l i m ~ v y ~ = l i m j ~ z j =  ql but  yizj ¢ S  for  all i 6D ,  j e E .  

Since S is closed there exist i ~ D and j e E such that  u 1 = y~ and vl = zj c a n n o t  

(1) It follows that in all cases k _--< m -- 1, and by applying the argument in the proof of the 
theorem this may easily be improved to k =< [½(m--I)]. If in addition S is connected, Tietze's 
theorem (below) implies that k >= 1, if S is not convex. 
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see xl ,  "",xh via S. Thus {ul, v i , x2 , x3 ,  "..,xh} is a visually independent set via S. 

Proceeding inductively, we may locate pairs (u2, v2) ,...,(uk,vk) corresponding to 

q2, "",  qk such that 

{Ul~ l)l, U2~ V2, "", Uk, Vk, Xk+ 1, "", Xl;} 

is a visually independent subset of  S. By m-convexity, h + k < m - 1, and the 

theorem follows. 

(Simple examples may be constructed to show that the number  m - k - 1 in 

Theorem 3 is best possible.) 

Several authors have explored the convexity properties of  L, se t s - - se t s  having 

the property that each pair of  points may be joined by a polygonal  arc in the set 

having n or fewer sides (see [2], [8], [12] and [18]). This concept has an intimate 

relationship with m-convexity as we shall see. 

LEMMA 2. A closed m-convex  set S is locally s tarshaped.  Thus  a closed 

connected m-convex  set is po lygonal ly  connected. 

PROOF. I f  there exists a point x and a net {x~} in S over D such that lim i ~ o x~ = x 

but x~x ¢ S  for all i ~ D  then there is an i t e D  such that for i > ix x l x i  ¢S .  Set 

yl  = x t and Y2 = xh .  In the same manner  there is an i2 e D such that i2 _-> i~ and 

for i > i2, y2xi ¢S .  I f  we set Y3 = xi2 then {Yl ,Y2,Y3}  is a visually independent 

subset of  S. Continuing inductively, one can find an infinite visually independent 

subset {Yl, "", Y,, , '"},  contradicting the m-convexity of  S. The second part  of  the 

lemma then follows by standard arguments (see for example Valentine [17], 

Theorem 4.3, p. 49). 

(Note that Example 1 shows the necessity of  the restriction to closed sets in 

Lemma 2.) 

THEOREM 4. A n y  closed, connected m-convex  set S c ~ is an Lm_a set. 

PROOF. Let x and y be points of  S. Since S is polygonally connected there is 

a polygonal  a r cP  c S joining x and y. Let F = E d be a finite-dimensional subspace 

containing P and suppose S '  is the component  of  S t3 F which contains P. Then S '  

is a closed m-convex subset of  S lying in a finite-dimensional linear space E n. I f  we 

prove there is a polygonal  arc in S '  joining x and y and having m - 1 or fewer 

sides, we shall be finished. 

Since S '  is closed there is a polygonal  a r c P '  in S '  joining x and y having s or 

fewer sides, where s is the number of  sides in P, and having minimal length. Let the 

consecutive vertices of  P '  be written 
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X ~- X0, Xl, " ' ,X  n = y, n ~ s, 

where the notation is chosen so that no three consecutive vertices are collinear. 

Consider a point y ~ ( x i _ l x  i) for any i, 1 _< i < n. Since ylxi+ 1 ~ S '  (otherwise 

there would exist a polygonal  arc shorter than P ' )  and S '  is closed there is a 

Yi+l ~(xixi+l) depending on Yi such that YlYi+x ¢S ' .  Thus, points y , e (x i_ l x i ) ,  

i = 1,... ,  n, may be chosen inductively so that for each i = 1,.. . ,  n - 1, YiYi+ 1 ~ S'.  

But also, because of the minimal length of P',  YiYj ~ S '  for any j > i q- 1 and 

hence {Yl, "", Yn} is a visually independent subset of S' .  By m-convexity, n -< m - 1. 

(A polygonal  arc with m -  1 sides shows that the result of  Theorem 4 is best 

possible.) 
Our methods provide an interesting p roof  of  Tietze's theorem on local con- 

vexity. Define a set to be locally convex if it contains no points of  local non- 

convexity. This concept corresponds to "weak local convexity" in Valentine [17] 

(Definition 4.2). 

THEOREM 5 (TIETZE): I f  S c ~CP and S is closed, connected, and locally convex, 

then S is convex. 

PROOF. The classic argument shows that  S is polygonally connected. Choose 

any two points x e S and y ~ S and let P be a polygonal  arc in S joining x and y. 

There is a finite-dimensional subspace F, and thus a compact  convex set N c F, 

which contains P. Let S '  be the component  of  N C~ S which contains P. Then S '  is 

a compact,  connected, locally convex subset of  F, and accordingly, one maycover  

S '  by relatively open convex neighborhoods Nx c S '  (x E S').  Let N~,, . . . ,  Nxm_, 

be a finite subcover of the covering {Nx}. Hence, as the union of the m - 1 convex 

sets N x , , ' " ,  N ..... ~, S'  is m-convex. Among all polygonal  arcs in S '  joining x and y 

and having m or fewer sides, let P '  have least length. Then, as in the proof  of  

Theorem 4, P '  has m - 1 or fewer sides. I t  follows that i f P '  is not a segment it has 

at least three consecutive noncollinear vertices, xl ,  x2, and x3, with x 2 an Inc point 

of  S' ,  since otherwise there would exist a polygonal  arc P" with m or fewer sides 

and of  length less than that of  P ' .  Hence x y  = P'  c S '  ~ S, proving that S is 

convex. 

Polygonal connectedness for connected m-convex sets which are not closed 

may also be derived, as well as a result analogous to Theorem 4, provided the 

finite-dimensionality of the space be required. The first step is to prove a result 

which replaces the first part  of Lemma 2. 
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LEMMA 3. I f  X is a l imi t  point  o f  an m-convex  set S c E a, then x can see 

S \{x} via S. 

PROOF. We use induction on d. Since x is a limit point of  S there is an infinite 

sequence Xo =(x i )  in S, i =  1,2, . . . ,  converging to x. The m-convexity of  S 

implies there is an xi~ which can see via S all members of  a subsequence X1 c Xo, 

an xi2eX1 which can see via S all members of  a subsequence X2 ~ X1, and 

inductively, there is an xi. e X,_  1 which can see via S all members o f a  subsequence 

X,  c X,_ 1, n = 1 ,2 , . . . .  I f  d = 1, it immediately follows that (xxi ,]  c S (a special 

conclusion for dimension 1 not deducible in higher dimensions). I f  d > 1, let L be 

a flat of dimension d - 2 containing x. It may be assumed that no subsequence 

of Xo lies in a flat of  dimension less than d or else the induction hypotheseis 

implies the result (by intersecting the flat with S, forming an m-convex set of  lower 

dimension). Applying this to the particular subsequence (xi~) defined above, 

there exist three points u = x~., v = x~, and w = x~, (r < s < t) such that the 

hyperplanes H(u),  H(v),  and H(w)  uniquely determined by L and the respective 

points u, v, w are pairwise distinct. Hence one pair among u, v, and w, say u 

and v, is strictly separated by the hyperplane determined by the remaining point. 

Since at most finitely many members of  Xt lie in H(w) ,  there is a subsequence 

X't of  X t which lies entirely on one side of H(w),  and hence is strictly separated by 

H(w)  f rom one of the points u or v, say u. Then uxj meets I f (w)  at a point Y1 e S 

for each x j ~ X ' t ,  and l imjy j  = x. The induction hypothesis applied to the set 

S t~ H(w)  = S '  then implies that x can see S '  \ {x} via S' ,  completing the proof. 

REMARK 4. I f  S be the set of all terminating sequences of  the form 

(xl ,  "--, x,, 0, 0, " ")  in Hilbert space W,, then S is a convex subset of  ~ whose 

closure is .~, and no point in : , f  \S can see S via S. Lemma 3 cannot hold, 

therefore, for infinite-dimensional spaces. 

THEOREM 6. In  a f in i t e -d imens ional  l inear space every connected m-convex 

set is po lygonal ly  connected. 

PROOF. Let P be a maximal polygonally-connected subset of  S. Unless P = S, 

it follows that both P and S \P are (m - 1)-convex sets. Since either c lP  n (S \ P) 

or P n cl (S \ P) must be nonvoid, either a point of  S \ P can see P via P or a point 

of  P can see S \ P  via S \P ,  contradicting the maximality of  P. Hence P = S 

and the theorem follows. 
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COROLLARY 2. In a finite-dimensional linear space every connected m-convex 

set is an LEm_ 3 set. 

PROOF. Let x and y be two points of  the given set S, and let 

x = Xo, Xa, . . . , x ,  = y 

be the consecutive vertices of  a polygonal  arc in S joining x and y such that the 

number n of  sides is minimal among all such arcs joining x and y. I f  n __> 2m - 2 

then {x2i: i = 0 , 1 , . . . , m -  1} would be a visually independent subset of  S, a 

violation of  m-convexity. Therefore, n < 2m - 3. 

The set S of  Example 2 shows that the preceding result is the best possible. 

For, S is m-convex, but every polygonal  arc in S joining a s with b,,,_ 1 has at least 

2m - 3 sides. 

REMARK 5. The referee has pointed out that certain results of  this section 

hold with only minor, alterations for the following weaker condi t ion :An infinite 

set is oo-convex if it contains no infinite visually independent subset; a set is 

exactly oo-convex if it is oo-convex but not m-convex for finite m. 

The m-convexity of  a set obviously implies it is oo-convex, but the example 

illustrated by Figure 1 represents a compact  starshaped subset of  E 2 which is 

exactly oo-convex. The set Sxl mentioned previously (the local kernel at 

xl = 2zl - z a of  the 4-convex set S defined in Example 1) is not even m-convex. 

The conclusion of Theorem 2 holds for oo-convex sets if " m  - 1 or fewer"  is 

replaced by "finitely many" ,  the proof  itself requiring no change at all. Lemmas 2 

and 3 and Theorem 6 each hold without change for m-convex sets (the con- 

clusions regarding L, sets reduce to mere polygonal connectedness in the case of  

m-convex sets, so Theorem 4 and Corollary 2 do not lead to any new results). 

The next theorem is a generalization of  the well-known proposition that the cone 

of a point over any convex set is convex (we shall use this classical result in the 

proof).  Here, the setting is a vector space ~ over any ordered field. 

DEFINITION I f  S = ¢/', the cone of  v over S is defined to be the set [,.J~ ~ sVX, and 

will be denoted vS. I f  V c ¢/-, the cone of V over S is the set ~.J~ ~v vS, denoted VS. 

Recall that the kernel K of a set S is the intersection of all the local kernels o f  

S ( =  ("lx~sSx). I t  is well known that K is convex and may be obtained as the 

intersection of all  the maximal convex subsets of  S. 

THEOREM 7. I f  S c ~#" is m-convex and V cs¢" is any set such that the segment 

jo in ing  each pair of  distinct points of  V meets the kernel K of S, then the set 
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S'  = V S  is also m-convex.  Further ,  i f  S is the union of  n convex sets, then S '  

is the union of  n convex sets. 

PROOF. Let K '  be the kernel of  S ' ;  we prove that V ~- K ' .  I f  v~ e V and x e S ' ,  

there are points v2 e V and y e S such that x e v2y. I f  v~ = v2 then v~x c v~y ~ S ' .  

Otherwise, there exists a point k e vtv2 c3 K and hence py  ~ S. Now with the 

notation u[vw] denoting the cone of u over vw, 

/)l X C conv {/)1,/)2,Y) = 2[/)1/)2] ~--- Y[/)I k U '/¢/)2] 

= = v l [ y k ]  S'. 

Thus/)~ can see any point of S '  via S '  and hence belongs to K ' .  

Now suppose x~,-.. ,  x,, are any rn points of  S ' .  By definition, there exist points 

v i e V and Yi e S such that xi e v~y i, i = 1, ..-, rn. By m-convexity of  S there exist i , j ,  

i # j ,  such that  ),~yj c S. I f  A~ = v~[y~yj] then A~ is a convex subset of  S ' ,  and 

the set A 2 =/)/A1 is also convex. Since vj e K ' ,  A 2 c S ' .  But then x i e h 1 c A 2 and 

xj e A2, so x~xj ~ A2 ~ S' ,  proving that S '  is rn-convex. 

The remainder of  the theorem is obviously an application of the result just 

obtained (for the special case of  2-convexity) to each of the convex sets C[ = KCi ,  

where the C~ are the convex sets in the union S = ~.J~= ~ c i .  Thus, VCi'is convex 

for each i and hence 

0 0 s ' =  v s  ; v [ c , ]  = v [ U K c , ]  = vc,: 
i=1 i=1 i=l 

4. The concept olin-convexity and finite unions of convex sets. McKinney [13] 

and Stamey and Marr  [14] have given characterizations of  closed sets which are 

unions of  two convex sets. It  would seem that the concept of m-convexity should 

be a useful tool in a characterization of sets which are unions of  finitely many 

convex sets. Example 1 shows that if  one attempts to use m-convexity as the only 

criterion the restriction to closed sets is necessary. Valentine's result concerning 

Pa [16] suggests the conjecture that a closed m-convex set is the union of  rn or 

fewer convex sets. The following example shows that this is false for rn > 3, 

even in E2: 

EXAMPLE 3. Take the set in E 2 as illustrated in Fig. 2, consisting of  the 

union of 6 parallelograms and their interiors. This set is closed and 4-convex, 

yet is not a union of fewer than 5 convex sets. The m-sided ring-shaped analogue 

of Fig. 2 (as illustrated in Fig. 3 for the case rn = 6) is (rn + 1)-convex, but is 

not a union of fewer than [½(3rn + 1)1 convex sets. A stronger example however, 
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is provided by k disjoint copies of Figure 2, which can be altered slightly to achieve 

connectedness; such a set is closed and (3k + 1)-convex, yet is not a union of  fewer 

Fig. 2 

Since a closed, connected 3-convex set is starshaped, one might consider imposing 

the condition that an m-convex set be starshaped. The next example shows that a 

closed, starshaped m-convex set need not be the union of m convex sets for m > 4 

(it is an open question for the case m -- 4). 

EXAMPLE 4. The 10-pointed star with interior as illustrated in Fig. 4 is a 

closed, starshaped 5-convex set which is not the union of  fewer than six convex 

sets. Note that this example consists of a superpositioa of  two pentagonal stars 

and interiors. By taking the union of suitably positioned elongated pentagonal 

stars one can generalize the example to higher values of  m. 

Fig. 3 Fig. 4 
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A more concise example which achieves the same purpose is the following: 

Given m > 2, take n = 3m - 1, e = e2"'/",and S,. = [,_J]= 1 conv {0,e~,~J+"}. S,, is 

an n-pointed star, is (m + 1)-convex, and is not a union of fewer than [3m/2] 
convex sets. 

Restricted versions of Valentine's result have been obtained either in higher 

dimensions or with a larger value of  m. E. Buchman [3] has proved that a compact 

3-convex set S ~ E d ( d  > 3) whose set Q of Inc points is contained in the interior 

of  the convex hull of  S and whose kernel has nonempty interior is the union of  

two convex sets. Guay [5] proved that if S is a closed, starshaped 4-convex subset 

of E 2 whose kernel is one-dimensional then S is the union of  4 convex sets, and 

that if S is a closed, connected 4-convex subset of  E 2 whose complement contains 

a bounded component,  then S is the union of 5 convex sets (Example 3 shows that 

this result is best possible). 

REFERENCES 
1. J. E. Allen, A generalization of  convexity, Amer. Math. Soc. Not. 8 (1961), 344. 

2. A. M. Bruckner and J. B. Bruckner, On Ln sets, the Hausdorffmetric, and connectedness, 
Proc. Amer. Math. Soc. 13 (1962), 765-767. 

3. E. Buchman, Generalizations ofarcwise convex sets, Doctoral Dissertation, University of 
California, Los Angeles (1968). 

4. L.W. Danzer, B. Grfinbaum and V. Klee, Helly's theorem and its relatives, Proc. Syrup. 
Pure Math., 7 (Convexity), Amer. Math. Soc., Providence, R. I. (1963), 155. 

5. M.D. Guay, Planar sets having property Pn, Doctoral Dissertation, Michigan State 
University, East Lansing (1967). 

6. W.R. Hare, Jr. and J. W. Gaddum, Projective convexity in topological linear spaces and 
a certain connection with property Pa, Amer. Math. Soc. Not. 7 (1960), 984-985. 

7. W.R. Hare, Jr. and J.W. Kenelly, Jr., Sets that are unions o f  two starlike sets, Nieuw 
Arch. Wisk. 14 (1966), 222-225. 

8. A. Horn and F. A. Valentine, Some properties of  L sets in the plane, Duke Math. J. 16 
(1949), 131-140. 

9. C.F. Koch and J. M. Marr, A characterization of  unions of  two star-shaped sets, Proc. 
Amer. Math. Soc. 17 (1966), 1341-1343. 

10. M.A. Krasoosel'skii, Sur un crit~re pour qu'un domaine soit dtoild, Mat. Sb. (N.S.) 19 
(61) (1946), 309-310 (Russian, French summary). 

11. J. M. Marr and W. L. Stamey, A three-pointproperty, Amer. Math. Monthly 69 (1962), 
22-25. 

12. J.W. McCoy, An extension of  the concept o f  L~ sets, Proe. Amer. Math. Soc. 16 (1965), 
177-180. 

13. R.L. McKinney, On unions of  two convex sets, Canad. J. Math. 18 (1966"), 883-886° 

14. W. L. Stamey and J. M. Marr, Unions of  two convex sets, Canad. J. Math. 15 (1963)p 
152-156. 



52 DAVID C. KAY AND MERLE D. GUAY Israel J. Math., 

15. P. Turfin, On the theory of  graphs, Colloq. Math. 3 (1964), 19-30. 

16. F. A. Valentine, A three point convexity property, Pacific J. Math. 7 (1957), 1227-1235. 

17. F. A. Valentine, Convex sets, McGraw-Hill, New York (1964). 

18. F.A. Valentine, Local convexity and L, sets, Proc. Amer. Math. Soc. 16 (1965), 
1305-1310. 

THE UNIVERSITY OF OKLAHOMA 

AND 

THE UNIVERSITY OF MAINE 


